
#### In-class exercise problem

A container filled with liquid aniline (molar mass: 93.13 g/mol) is stored in a large room. The container has a cylindrical tube with length of 10 cm and a diameter of 1 cm. Initially, the cylindrical tube is filled with air (pressure of 1 atm), and aniline is prevented from evaporation. At time t = 0, the evaporation of aniline is allowed.

- Saturation vapor pressure of aniline: 10 kPa
- **■** The diffusion coefficient of the aniline vapor in air:  $9 \times 10^{-2}$  cm<sup>2</sup>/s.
- Aniline vapor can be treated as ideal gas.
- **Assume** a concentration of 0 at z = 10 cm, and saturation conditions at z = 0.



- 1. Neglecting convection, calculate the partial pressure of aniline vapor at z = 1.5 cm after 25 seconds.
- 2. Estimate the error in neglecting convection.

When convection is neglected;

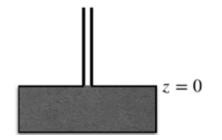
$$\frac{c(z,t) - c_S}{c_{\infty} - c_S} = erf \, \zeta$$

$$c_{\infty}=0$$
 
$$t=25 \text{ s, } z=0.015 \text{ m}$$
 
$$\Rightarrow \zeta=0.5$$
 
$$D=9 \text{ x } 10^{-2} \text{ cm}^2/\text{s}$$

$$\Rightarrow \frac{c(z,t) - c_S}{0 - c_S} = erf \zeta$$

$$\Rightarrow \frac{c(z,t)}{c_S} = (1 - erf \zeta) = 0.48$$

Partial pressure = 4.8 kPa




#### In-class exercise problem

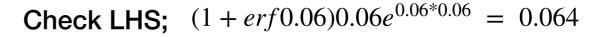
When convection is considered

$$\bar{V}_1 c_1^{\text{sat}} = \left(1 + \frac{1}{\sqrt{\pi} (1 + \text{erf } \phi) \phi e^{\phi^2}}\right)^{-1}$$

In vapor phase, 
$$\bar{V}_1 c_1^{sat} = y_1^{sat} = 10/100 = 0.1$$



$$\Rightarrow \left(1 + \frac{1}{\sqrt{\pi}(1 + \operatorname{erf} \phi)\phi e^{\phi^2}}\right) = 10$$


$$\Rightarrow \frac{1}{\sqrt{\pi(1 + \operatorname{erf} \phi)\phi} e^{\phi^2}} = 9$$

$$\Rightarrow \sqrt{\pi}(1 + \operatorname{erf} \phi)\phi e^{\phi^2} = \frac{1}{9} = 0.11$$

$$\Rightarrow (1 + \operatorname{erf} \phi)\phi e^{\phi^2} = 0.06$$

 $\phi$  is positive (dimensionless velocity),  $\Rightarrow 1 + \text{erf } \phi > 1$ , also  $\exp(\phi^2) > 1$ 

$$\Rightarrow \phi$$
 is small  $\approx 0.06$ 





### In-class exercise problem

$$\frac{c_1}{c_1^{\text{sat}}} = \frac{1 - \text{erf}(\zeta - \phi)}{1 + \text{erf}\phi}$$

$$\zeta = 0.5$$

$$\zeta = 0.5 \qquad \qquad \phi = 0.06$$

$$\frac{c_1}{c_1^{\text{sat}}} = \frac{1 - \text{erf } 0.44}{1 + \text{erf } 0.06} = 0.5$$

Partial pressure comes out to be 5.0 kPa

Neglecting convection, we got partial pressure of 4.8 kPa

Very small error because y<sub>1</sub>sat is only 0.1

# Exercise problem 1: calculate mean-free path, mean velocity and D of helium at 1 atm and 25 °C.

$$l = \frac{k_B T/P}{\left(\frac{\pi}{4}\sigma^2\right)} = \frac{\text{volume occupied by single molecule}}{\text{cross-sectional area}}$$

| Substance |        | $\sigma(	ext{Å})$ | $\epsilon_{12}/k_{\mathrm{B}}(\mathrm{K})$ |
|-----------|--------|-------------------|--------------------------------------------|
| He        | Helium | 2.551             | 10.2                                       |

$$\bar{v} = \sqrt{\frac{8k_BT}{\pi m}}$$

$$D = \frac{1}{3}\bar{v}l = \frac{8}{3}\sqrt{\frac{2}{m}}\left(\frac{k_BT}{\pi}\right)^{3/2}\frac{1}{P\sigma^2}$$



# Exercise problem 1: calculate mean-free path, mean velocity and D of helium at 1 atm and 25 °C.

$$l = \frac{k_B T/P}{\left(\frac{\pi}{4}\sigma^2\right)} = \frac{\text{volume occupied by single molecule}}{\text{cross-sectional area}}$$

$$\bar{v} = \sqrt{\frac{8k_BT}{\pi m}}$$

$$D = \frac{1}{3} \bar{v} l = \frac{8}{3} \sqrt{\frac{2}{m}} \left(\frac{k_B T}{\pi}\right)^{3/2} \frac{1}{P \sigma^2}$$

Table 5.1-2 Lennard–Jones potential parameters found from viscosities

| Substance |        | $\sigma(\mathring{ m A})$ | $\varepsilon_{12}/k_{\mathrm{B}}(\mathrm{K})$ |
|-----------|--------|---------------------------|-----------------------------------------------|
| He        | Helium | 2.551                     | 10.2                                          |

$$l = \frac{1.38 * 10^{-23} * 298/101325}{\left(\frac{3.14}{4} (2.55 * 10^{-10})^2\right)} = 7.95 * 10^{-7} m = 795 nm$$

$$\bar{v} = \sqrt{\frac{8*1.38*10^{-23}*298}{3.14*(0.004/(6.023*10^{23})}} = 1256.05 \text{ m/s}$$

$$D = \frac{1}{3}\bar{v}l = \frac{1}{3}1256.05*7.95*10^{-7} = 3.33*10^{-4} \, m^2 \, s^{-1} = 3.33 \, cm^2 \, s^{-1}$$



Exercise problem 2: In previous problem, calculate how fast a gas molecule is colliding. Also, calculate average distance between molecules and compare to mean free path.



Exercise problem 2: In previous problem, calculate how fast a gas molecule is colliding. Also, calculate average distance between molecules and compare to mean free path.

Time scale for collision is 
$$\approx \frac{l}{\overline{v}} = 0.63 \text{ ns}$$

Volume occupied by 1 mole = 22.4 liter

Volume occupied by 1 molecule = 37.2 nm<sup>3</sup>

Average distance between molecules = 3.3 nm

Mean free path was calculated as 795 nm



## Exercise problem 3: Calculate D for helium in argon at 1 atm and 25 °C with the Chapman-Enskog theory

$$D_{12} = \frac{1.86*10^{-3}*T^{1.5}*(1/M_1+1/M_2)^{0.5}}{P\sigma_{12}^2\Omega} \begin{array}{c} D \text{ in cm}^2/\text{s} \\ T \text{ in Kelvin} \\ P \text{ in atm} \\ M \text{ in g/mole} \end{array}$$

T in Kelvin P in atm *M* in g/mole  $\sigma_{12}$  in Angstrom

Table 5.1-2 Lennard–Jones potential parameters found from viscosities

| Substance |        | $\sigma(\mathring{ m A})$ | $\epsilon_{12}/k_{\mathrm{B}}(\mathrm{K})$ |
|-----------|--------|---------------------------|--------------------------------------------|
| Ar        | Argon  | 3.542                     | 93.3                                       |
| He        | Helium | 2.551                     | 10.2                                       |

Table 5.1-3 *The collision integral*  $\Omega$ 

| $\overline{k_{\mathrm{B}}T/arepsilon_{12}}$ | Ω     | $k_{ m B}T/\epsilon_{12}$ | Ω      | $k_{ m B}T/arepsilon_{ m 12}$ | Ω      |
|---------------------------------------------|-------|---------------------------|--------|-------------------------------|--------|
| 0.30                                        | 2.662 | 1.65                      | 1.153  | 4.0                           | 0.8836 |
| 0.40                                        | 2.318 | 1.75                      | 1.128  | 4.2                           | 0.8740 |
| 0.50                                        | 2.066 | 1.85                      | 1.105  | 4.4                           | 0.8652 |
| 0.60                                        | 1.877 | 1.95                      | 1.084  | 4.6                           | 0.8568 |
| 0.70                                        | 1.729 | 2.1                       | 1.057  | 4.8                           | 0.8492 |
| 0.80                                        | 1.612 | 2.3                       | 1.026  | 5.0                           | 0.8422 |
| 0.90                                        | 1.517 | 2.5                       | 0.9996 | 7                             | 0.7896 |
| 1.00                                        | 1.439 | 2.7                       | 0.9770 | 9                             | 0.7556 |
| 1.10                                        | 1.375 | 2.9                       | 0.9576 | 20                            | 0.6640 |
| 1.30                                        | 1.273 | 3.3                       | 0.9256 | 60                            | 0.5596 |
| 1.50                                        | 1.198 | 3.7                       | 0.8998 | 100                           | 0.5130 |
| 1.60                                        | 1.167 | 3.9                       | 0.8888 | 300                           | 0.4360 |

Source: Data from Hirschfelder et al. (1954).



# Exercise problem 3: Calculate D for helium in argon at 1 atm and 25 °C with the Chapman-Enskog theory

$$D_{12} = \frac{1.86 * 10^{-3} * T^{1.5} * (1/M_1 + 1/M_2)^{0.5}}{P\sigma_{12}^2 \Omega}$$

D in cm<sup>2</sup>/s
T in Kelvin
P in atm
M in g/mole
σ<sub>12</sub> in Angstrom

$$\epsilon_{12}/k_B = \sqrt{\epsilon_1/k_B * \epsilon_2/k_B} = \sqrt{93.3 * 10.2} = 30.8$$

Table 5.1-2 Lennard–Jones potential parameters found from viscosities

| Substance |        | $\sigma(	ext{Å})$ | $\epsilon_{12}/k_{\mathrm{B}}(\mathrm{K})$ |
|-----------|--------|-------------------|--------------------------------------------|
| Ar        | Argon  | 3.542             | 93.3                                       |
| He        | Helium | 2.551             | 10.2                                       |

Table 5.1-3 *The collision integral*  $\Omega$ 

| $k_{\mathrm{B}}T/\epsilon_{12}$ | $\Omega$ | $k_{ m B}T/arepsilon_{ m 12}$ | $\Omega$ | $k_{ m B}T/arepsilon_{ m 12}$ | $\Omega$ |
|---------------------------------|----------|-------------------------------|----------|-------------------------------|----------|
| 0.30                            | 2.662    | 1.65                          | 1.153    | 4.0                           | 0.8836   |
| 0.40                            | 2.318    | 1.75                          | 1.128    | 4.2                           | 0.8740   |
| 0.50                            | 2.066    | 1.85                          | 1.105    | 4.4                           | 0.8652   |
| 0.60                            | 1.877    | 1.95                          | 1.084    | 4.6                           | 0.8568   |
| 0.70                            | 1.729    | 2.1                           | 1.057    | 4.8                           | 0.8492   |
| 0.80                            | 1.612    | 2.3                           | 1.026    | 5.0                           | 0.8422   |
| 0.90                            | 1.517    | 2.5                           | 0.9996   | 7                             | 0.7896   |
| 1.00                            | 1.439    | 2.7                           | 0.9770   | 9                             | 0.7556   |
| 1.10                            | 1.375    | 2.9                           | 0.9576   | 20                            | 0.6640   |
| 1.30                            | 1.273    | 3.3                           | 0.9256   | 60                            | 0.5596   |
| 1.50                            | 1.198    | 3.7                           | 0.8998   | 100                           | 0.5130   |
| 1.60                            | 1.167    | 3.9                           | 0.8888   | 300                           | 0.4360   |

$$\frac{K_B T}{\epsilon_{12}} = 298/30.8 = 9.67$$

$$\Omega \approx 0.75$$

$$\sigma_{12} = \frac{3.542 + 2.551}{2} = 3.047 \stackrel{o}{A}$$

$$D_{12} = \frac{1.86 * 10^{-3} * 298^{1.5} * (1/4 + 1/40)^{0.5}}{1 * 3.047^{2} * 0.75}$$

$$= 0.72 cm^2 s^{-1}$$

